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Aim: Attenuation correction using zero-echo time (ZTE) – magnetic resonance imaging
(MRI) (ZTE-MRAC) has become one of the standard methods for brain-positron emission
tomography (PET) on commercial PET/MR scanners. Although the accuracy of the
net tracer-uptake quantification based on ZTE-MRAC has been validated, that of the
diagnosis for dementia has not yet been clarified, especially in terms of automated
statistical analysis. The aim of this study was to clarify the impact of ZTE-MRAC on
the diagnosis of Alzheimer’s disease (AD) by performing simulation study.

Methods: We recruited 27 subjects, who underwent both PET/computed tomography
(CT) and PET/MR (GE SIGNA) examinations. Additionally, we extracted 107 subjects
from the Alzheimer Disease Neuroimaging Initiative (ADNI) dataset. From the PET
raw data acquired on PET/MR, three FDG-PET series were generated, using two
vendor-provided MRAC methods (ZTE and Atlas) and CT-based AC. Following spatial
normalization to Montreal Neurological Institute (MNI) space, we calculated each
patient’s specific error maps, which correspond to the difference between the PET
image corrected using the CTAC method and the PET images corrected using the
MRAC methods. To simulate PET maps as if ADNI data had been corrected using MRAC
methods, we multiplied each of these 27 error maps with each of the 107 ADNI cases in
MNI space. To evaluate the probability of AD in each resulting image, we calculated
a cumulative t-value using a fully automated method which had been validated not
only in the original ADNI dataset but several multi-center studies. In the method, PET
score = 1 is the 95% prediction limit of AD. PET score and diagnostic accuracy for
the discrimination of AD were evaluated in simulated images using the original ADNI
dataset as reference.

Results: Positron emission tomography score was slightly underestimated both
in ZTE and Atlas group compared with reference CTAC (−0.0796 ± 0.0938 vs.
−0.0784 ± 0.1724). The absolute error of PET score was lower in ZTE than Atlas group
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(0.098 ± 0.075 vs. 0.145 ± 0.122, p < 0.001). A higher correlation to the original
PET score was observed in ZTE vs. Atlas group (R2: 0.982 vs. 0.961). The accuracy
for the discrimination of AD patients from normal control was maintained in ZTE and
Atlas compared to CTAC (ZTE vs. Atlas. vs. original; 82.5% vs. 82.1% vs. 83.2% (CI
81.8–84.5%), respectively).

Conclusion: For FDG-PET images on PET/MR, attenuation correction using ZTE-MRI
had superior accuracy to an atlas-based method in classification for dementia. ZTE
maintains the diagnostic accuracy for AD.

Keywords: PET/MR, attenuation correction, dementia, Alzheimer’s disease, ADNI database, ZTE MRI, atlas-based
MRAC, statistical analysis

INTRODUCTION

Positron emission tomography (PET)/magnetic resonance (MR)
has been distributed worldwide and started to be used for the
evaluation of dementia both in the clinical and research setting
(Drzezga et al., 2014; Barthel et al., 2015; Fendler et al., 2016;
Henriksen et al., 2016; Mainta et al., 2017; Zhang et al., 2017;
Hope et al., 2019; Prato et al., 2019; Yan et al., 2020). The multi-
modal evaluation combining functional images such as PET and
morphological images such as MR imaging (MRI) is optimal
because each of them provides complementary information
(Teipel et al., 2015; Kaltoft et al., 2019). In addition, the motion
artifact or partial volume effect on PET images can be minimized
by utilizing simultaneous acquisition of MRI (Chen et al., 2018;
Yan et al., 2020).

One of the fundamental limitations of PET/MR systems is
attenuation correction (AC) derived from MRI (MRAC). With
conventional MRI sequences, bone has subtle or no signal
intensity because of fast T2∗ decay. This results in a difficulty to
discriminate bone from other components. This is particularly
relevant in brain parenchyma which is covered entirely by the
skull. Neglecting attenuation correction from bone causes large
and spatially varying error (Andersen et al., 2014).

In this decade, there has already been a vast number
of published papers proposing and validating novel MRAC
methods. Several novel MRAC methods has been identified
that can effectively estimate skull bone (Mehranian et al.,
2016; Ladefoged et al., 2017; Teuho et al., 2020). However, the
implementation of these methods into commercial PET/MR
scanners is still lacking. In addition, the question about how
the impact of subtle residual errors on the diagnostic accuracy
in dementia is still unanswered, because well-controlled clinical
trials using PET/MR scanners have not been conducted so
far (Catana et al., 2018; Hope et al., 2019; Teuho et al.,
2020). For the evaluation of Alzheimer’s disease (AD), spatial
normalization, intensity normalization and statistical analysis
such as t-value calculation are generally performed (Herholz
et al., 2002; Haense et al., 2009). Spatial normalization is
performed by non-rigidly transforming the original images to
PET template. Intensity normalization consists in dividing the
2-Deoxy-2-[18F] fluoroglucose (FDG) uptake by the average
uptake in a reference region (e.g., cerebellum, non-AD-related
voxels or whole brain). Following it, t-value is statistically

calculated as the difference between the patient’s uptake and
the average uptake of healthy controls. These steps compensate
the variability of brain shape and tracer uptake among subjects.
In this setting, not only the net error of tracer uptake,
but the distribution of error may impact the result. For
example, the underestimation of the reference regions leads
to an overestimation of the tracer uptake in AD-related
regions, or vice versa. From this point of view, one can
argue whether the normal FDG-PET database acquired on
PET/computed tomography (CT) scanners could be directly
applied to that on PET/MR.

In our previous simulation study, the diagnostic accuracy of
FDG-PET on PET/MR was tested by using normal database
of FDG-PET on PET/CT (Sekine et al., 2020). That study
combined real patients’ FDG-PET images from PET/MR and
well-controlled large cohort FDG-PET data from PET/CT in the
same space (spatially normalized to the same brain template
with the same voxel size). In the study, FDG-PET from PET/MR
was generated based on atlas-based MRAC (Atlas) which is one
of the commercially available MRAC methods installed in the
GE SIGNA PET/MR (Sekine et al., 2016a; Yang et al., 2017a).
The results showed that Atlas had similar diagnostic accuracy
to the gold-standard, CT-based attenuation correction (CTAC),
for the diagnosis of AD, although it slightly impaired sensitivity
(Sekine et al., 2020). Currently, Atlas is rarely used for brain
PET/MR because the vendor already developed a more accurate
MRAC by using zero-echo time MRI (ZTE) which estimates
head skull bone by capturing subtle proton density (Delso et al.,
2015; Wiesinger et al., 2016). Although several previous studies
have clarified that ZTE has substantial accuracy in the net
quantification of tracer uptake (i.e., the error is below 10 %
generally), the effect of residual error from ZTE was not validated
in terms of diagnostic accuracy of AD (Sekine et al., 2016c; Yang
et al., 2017b; Sousa et al., 2018; Schramm et al., 2019; Sgard
et al., 2019). Before the implementation of ZTE into the clinical
FDG-PET/MR evaluation of AD, the diagnostic performance
should be validated.

The purpose of this study was to test the diagnostic
accuracy of FDG-PET/MR applying vendor-provided ZTE-
MRAC to discriminate AD from healthy controls. We performed
a simulation study combining real patient’ data and an
Alzheimer Disease Neuroimaging Initiative (ADNI) dataset, a
well-established large cohort. The whole process was done in
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an objective and standardized manner, using semi-automatic
statistical processing without user interaction.

MATERIALS AND METHODS

Alzheimer Disease Neuroimaging
Initiative (ADNI) Data
Data used in the preparation of this article were obtained from
the ADNI database1. ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early AD.
For up-to-date information2.

From ADNI-1 data, we extracted 107 participants (48
healthy and 59 AD participants). The inclusion criteria were
completeness of date of birth and diagnosis (healthy or AD)
who visit 24 months after 1st PET scan, which inclusion criteria
was the same as our previous simulation study focusing on
Atlas-based MRAC (Sekine et al., 2020). All raw PET images
were of sufficient quality for visual scoring and for software-
based analysis using PALZ (PMOD Alzheimer’s Discrimination
tool, Zurich, Switzerland). The reported FDG-PET imaging
parameters were: injected dose, 185 MBq (5 mCi), dynamic 3D
acquisition, six 5-min frames 30–60 min post injection.

Patients
We recruited 27 patients who underwent both PET/CT and
PET/MR for oncologic staging from our previous study (Delso
et al., 2018; Sekine et al., 2020). The 27 patients (15 males and 12
females, 60.0 ± 13.0 years) with lymphoma, pheochromocytoma,
myeloma, melanoma, Merkel-cell cancer, lung cancer, pancreatic
cancer, breast cancer and dementia were collected from another
previous study, after excluding 3 patients. Two of these three
excluded patients had infarction and one had multiple brain
metastases. A neuroradiologist (TS) reviewed and confirmed that
all included patients were free of brain abnormalities.

PET/CT and PET/MR Acquisition
The averaged injected dose of FDG was 534 ± 42 MBq
[range, 434–566 MBq]. The PET/CT acquisition followed the
standard protocol for a clinical oncology study using a Discovery
RX/MI/690/710 PET/CT (GE Healthcare). A helical whole-
body CT scan (120 - 140 kV, slice thickness 3.75–5.00 mm,
pixel size 1.37 mm× 1.37 mm) was acquired for AC of PET
data and diagnostic purposes. Subsequently, a whole-body PET
dataset including the head was acquired. Immediately before
or after the PET/CT scan, patients were transferred to the
integrated PET/MR scanner (SIGNA PET/MR, GE Healthcare),
and a brain PET/MR scan was performed as part of the study
examination. A 10 min acquisition with a standard head coil (8-
channel HD Brain; GE Healthcare) was performed. The duration

1adni.loni.usc.edu
2www.adni-info.org

between tracer injection and PET acquisition was 112 ± 15 min
[range, 66–138 min].

During the PET acquisition on the PET/MR, liver acquisition
with volume acceleration flex (LAVA-Flex) T1w images (axial
acquisition, TR ∼ 4 ms, TE 2.23 ms, flip angle 5◦, slice
thickness 5.2 mm with 2.6 mm overlap, 120 slices, pixel
size 1.95 mm × 1.95 mm, number of excitations (NEX) 0.9,
acquisition time: 18 s) were acquired for vendor-provided atlas-
based AC.

Additionally, proton-density ZTE MR images (sagittal
acquisition; non-selective hard pulse excitation; 3-dimensional
center-out radial acquisition; repetition time, 410 ms; nominal
echo time, 0 ms; transmit-receive switching times, 20 µs;
flip angle, 1◦; slice thickness, 2.78 mm; 118 slices; pixel size,
1.17 mm × 1.17 mm; bandwidth ± 62.5 kHz; number of
excitations, 4; acquisition time, 48 s; spokes per segment,
512) were acquired.

Attenuation Map Generation
For each patient, 3 AC maps were generated, Atlas-AC, ZTE-
AC and CT-AC. The brief overview of the algorithm was
described below.

Attenuation MAP Based on Atlas
Methods (Sekine et al., 2016a; Yang
et al., 2017a)
An atlas-based method was used to derive a pseudo-CT that
included continuous attenuation information for the head, using
a single-head atlas, which was provided by the vendor and is
based on CT images from 50 subjects. The pseudo-CT was
generated as follows. First, 3-mm Hessian-bone enhancement
from LAVA in-phase images was performed. Second, pseudo-
CT was generated by rigid and non-rigid B-spine-based elastic
registration between bone-enhanced MR image and the head
atlas. Third, the attenuation map is generated from the pseudo-
CT using the standard energy conversion and resampling. Finally,
the MR hardware, coil, and bed are added to the attenuation map.

Attenuation MAP Based on ZTE Imaging
(Sekine et al., 2016c; Wiesinger et al.,
2016; Yang et al., 2017b)
The processing steps detailed below were performed using
custom Matlab scripts (version 7.11.0; The MathWorks) but
whole steps are the same as the commercial version. Attenuation
Map based on ZTE imaging includes three steps. First,
bias correction was applied. Second, tissue classification was
performed by thresholding for soft tissue/bone and bone/air,
based on the values of the tissue and air histogram peaks.
Third, continuous attenuation values were assigned to the bone,
based on the linear correlation between CT values and ZTE MR
values (offset, 300; slope, 2,400; maximum bone value, 2,000
Hounsfield units). To the soft tissue, a fixed attenuation value of
42 Hounsfield units was assigned. The formulas to generate the
thresholds and attenuation value were defined empirically before
the study and remained constant for all patients.
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Co-registered Attenuation Map Based on
CT Method
The processing steps detailed below were performed using
custom Matlab scripts and PMOD (version 4.0; PMOD
Inc., Zurich, Switzerland). The co-registered CT-AC map was
generated as follows. First, the original head CT was exported
from the PET/CT scanner and converted into AC-map using
a Matlab version of the same bilinear mapping implemented
in the SIGNA PET/MRI. Second, from this map, the CT table
was removed manually. Third, a threshold was set to extract
the outside air component from the CT-AC map. None of
the images used in this study contained artifacts likely to
affect air thresholding. Fourth, a normalized mutual information
matching algorithm (PMOD) was used to derive the registration
parameters necessary to match CT to LAVA-Flex T1w, and the
final matching was performed using custom Matlab routines.
Finally, the CT-AC map was superimposed on the atlas-AC map,
thereby replacing it.

Reconstruction of PET Images
Only the raw PET data from the TOF PET/MR examination
were used. PET images were reconstructed with AC based on
each of the 3 attenuation maps and the following parameters:
fully 3-dimensional ordered-subset expectation maximization
iterative reconstruction; subsets, 28; iterations, 8; pixel size,
1.17 mm × 1.17 mm; point spread function modeling; transaxial
post reconstruction gaussian filter cutoff, 3 mm; axial filter,
1:4:1; scatter; normalization; dead-time and decay corrections;
TOF reconstruction.

Automated Software for AD Probability
Assessment
Automated AD probability assessment was performed in a
commercially available tool which was established in the ADNI
study and validated in several multi-center study, such as NEST-
DD and SEADS-JAPAN (PMOD Alzheimer’s Discrimination,
PALZ) (Haense et al., 2009; Herholz et al., 2011; Ito et al., 2015).
The software ran the following procedure, in a fully automated
workflow based on the previous study (Herholz et al., 2002). First,
spatial normalization is performed by transforming the original
images to the SPM 99 PET template, followed by smoothing with
Gaussian filter of 12 × 12 × 12 mm. In these images, voxel
values are normalized by dividing each image voxel value by the
mean voxel value, averaged within a mask representing voxels in
which FDG uptake is typically preserved even in AD patients.
The expected value in each voxel is calculated from a pre-stored,
age-matched, reference PET database of healthy controls using
voxel-wise age regression parameters. By comparing the voxel-
wise differences between expected value and the patient-specific
value, a Student’s t-value is calculated. The AD t-sum is calculated
by summing the t-value in predefined AD-related voxels. Finally,
the PET Score was calculated as log2 (AD t-sum/11089 +1),
for which the 95% prediction limit (11089) of AD t-sum was
established in the ADNI or NEST-DD multi-center trial. This
analysis was initially performed in all 107 ADNI-PET data (e.g.,
PETscore original) before multiplication with the 27 error maps.

Creation of Simulated Data: ADNI-Data
With Atlas-AC or ZTE-AC
The whole steps were done according to the previous report
(Sekine et al., 2020). All simulation steps were performed
in MNI space with same spatial resolution (2 mm isotropic
voxels). First, we divided the locally acquired PET images based
on atlas AC or ZTE by those based on CTAC (27 patients)
(e.g., ErrorPET

pt−i). Second, the resulting images were spatially
normalized to the SPM99 PET template using the transformation
calculated for PET images based on CTAC to the template,
then a Gaussian filter of 12 × 12 × 12 mm full-width half-
maximum was applied (NormError PET

pt−i). A brain mask was applied
to avoid distortion at the edges of the measured data. These
steps were designed to replicate the preprocessing steps used
in the PMOD Alzheimer’s Discrimination tool, as used to
calculate PET score. Therefore, the resulting images were the
error maps (between MRAC and CTAC) in the same image
space as the spatially normalized ADNI PET data (NormPETADNI−j

).
It minimized the error derived from the difference of scan
condition (e.g., imaging protocol of PET scanner) between ADNI
data and patients’ data. Third, we multiplied each of the 107
normalized ADNI data with each of the 27 normalized error
maps, resulting in 107 × 27 = 2889 normalized PET images
(e.g., NormError PET

pt−i
ADNI−j) for each MRAC method. Thus, the value-

error was simply imposed in a voxel-wise manner and further
PET score calculation was performed without additional need
for spatial deformation or filtering. Therefore, we expected any
bias due to impaired spatial normalization or differences in PET
acquisition protocol to be minimized. For each of these 5778
images (2889 × 2), PALZ analysis was performed to calculate the
PET score based on MRAC (PETscoreMRAC).

Evaluation of Diagnostic Accuracy for
Alzheimer’s Disease
We calculated the absolute PET score difference between
PETscoreMRAC and PETscoreoriginal. This PET score difference was
compared between Atlas-AC and ZTE-AC by using paired t-test.
We also drew performed regression and Bland-Altman analysis
between PETscoreMRAC and PETscoreoriginal.

We evaluated the diagnostic accuracy of discrimination of AD
from normal patients. Setting cut-off value to PET score = 1 based
on a previous study, we calculated the accuracy, sensitivity, and
specificity of each MRAC series (Haense et al., 2009; Herholz
et al., 2011). Additionally, we performed a receiver-operating-
curve analysis to define the modified cut-off values for each
MRAC series according to the maximum value of the Youden
index (Youden, 1950; Schisterman et al., 2005).

RESULTS

PETscoreAtlas and PETscoreZTE were underestimated compared
to PETscoreoriginal (PETscoreAtlas minus PETscoreoriginal:
−0.0784 ± 0.1724; PETscoreZTE minus PETscoreoriginal:
−0.0796 ± 0.0938) (Tables 1A,B and Figure 1). The
absolute PETscore difference between PETscoreZTE and
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TABLE 1-A | PETscore in each 2889 simulated dataset.

PETscore Ave SD Max Min

PETscoreAtlas 1.0792 0.7614 3.6136 0.0956

PETscoreZTE 1.0755 0.7852 3.6193 0.1118

PETscoreoriginal 1.1443 0.7972 3.6488 0.1669

Ave, average; SD, standard deviation; Max, maximum; Min, minimum.

TABLE 1-B | Positron emission tomography score difference
(PETscoreMRAC-PETscoreoriginal ) in each 2889 simulated dataset.

PET score difference Ave SD Max Min

Atlas −0.0651 0.1669 0.3840 −0.8404

ZTE −0.0689 0.0918 0.2070 −0.4873

Ave, average; SD, standard deviation; Max, maximum; Min, minimum.

TABLE 1-C | Absolute PET score difference (|PETscoreMRAC-PETscoreoriginal |) in
each 2889 simulated dataset.

Absolute PET
score difference

Ave SD Max Min P-value

Atlas 0.1392 0.1128 0.8404 0.0000 < 0.0001

ZTE 0.0885 0.0731 0.4873 0.0000

Paired samples t-test was performed between |PETscoreAtlas-PETscoreoriginal |
and |PETscoreZTE -PETscoreoriginal |. Ave, average; SD, standard deviation; Max,
maximum; Min, minimum.

PETscoreoriginal was slightly lower than that between PETscoreAtlas
and PETscoreoriginal (0.098 ± 0.075 vs. 0.145 ± 0.122,
p < 0.0001) (Table 1C).

Regression and Bland-Altman analysis between
PETscoreoriginal and either PETscoreAtlas or PETscoreZTE are

shown in Figures 2, 3. The slope of the regression lines between
PETscoreoriginal and PETscoreAtlas were 0.9342 and between
PETscoreoriginal and PETscoreZTE 0.9882. The coefficient of
determination (R2) was higher for PETscoreZTE and limits of
agreement (LOA) of PETscoreZTE was lower than PETscoreAtlas
(R2: 0.982 vs. 0.961, LOA: −0.211 to 0.073 vs. −0.323 to 0.194).

Accuracy, sensitivity, and specificity of each attenuation
method with cut-off values of PET score = 1 are shown in Table 2.
The accuracy for the discrimination of AD patients from normal
control derived from Atlas or ZTE was maintained [Atlas vs. ZTE
vs. original; 82.5% (CI 81.0–83.8%) vs. 82.1% (CI 80.7–83.5%)
vs. 83.2% (CI 81.8–84.5%)] but sensitivity was slightly impaired
compared with those derived from CTAC [Atlas vs. ZTE vs.
original; 77.2% (CI 74.9–79.5%) vs. 78.6% (76.3–80.8%), 83.3%
(CI 81.2–85.3%)].

The receiver-operating-curve analysis to determine modified
cut-off values of PET score is shown in Figure 3. The modified
cut off values are PETscoreAtlas = 0.924, PETscoreZTE = 1.143,
respectively. Setting cut-off values to these modified scores, the
accuracy and specificity of ZTE was slightly improved [83.7%
(CI 82.3–85.1%) and 91.0% (CI 89.5–92.4%)]. The values of area
under the curve (AUC) of ROC curve were not impaired in
Atlas {0.859 [CI: 0.844–0.875]) or ZTE (0.870 [CI: 0.855–0.884]),
compared with CTAC (0.876 [CI: 0.862–0.890])}.

DISCUSSION

In the current study, we validated the diagnostic performance
of two types of MRAC methods in the classification of AD
with FDG-PET. We generated simulated images by multiplying
well-controlled cohort, ADNI-dataset and real patients’ error

FIGURE 1 | Regression line analysis between PETscoreMRAC and PETscoreoriginal . This plot shows 107 data which are averaged from 27 error maps. The horizontal
axis shows PETscoreoriginal and the vertical axis shows PETscoreAtlas (A) or PETscoreZTE (B). Regression equation were y = 0.9342x + 0.0102 (A) and y = 0.9784x +
0.0441 (B), respectively. R2 were 0.9614 (A) and 0.9882 (B), respectively. R2, coefficient of determination.
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FIGURE 2 | Bland-Altman plot between PETscoreMRAC and PETscoreoriginal . This plot shows 107 data which are averaged based on 27 error maps. The vertical axis
shows difference of PETscoreoriginal and PETscoreAtlas (A) or PETscoreZTE (B). The horizontal axis shows average of PETscoreoriginal and PETscoreAtlas (A) or
PETscoreZTE (B). LOA were –0.323 to 0.194 (A) and –0.211 to 0.073 (B), respectively. LOA, limits of agreement.

FIGURE 3 | When setting the cut-off value to PETscoreZTE = 1.143, the
sensitivity and specificity were 75 and 91% with AUC = 0.870 (CI:
0.855–0.884). When setting the cut-off value to PETscoreAtlas = 0.924, the
sensitivity and specificity were 81 and 84% with AUC = 0.859 (CI:
0.844–0.875). The AUC of CTAC was 0.876 (CI: 0.862–0.890). AUC, area
under curve.

maps derived from each MRAC method. The results show the
PETscore based on both Atlas and ZTE were underestimated
compared with the original PETscore based on CTAC. ZTE had

smaller variability of the error than Atlas MRAC. The accuracy
was not impaired by either MRAC, though the sensitivity was
slightly impaired due to the underestimation of PETscore. By
determining and setting modified cut off values, slightly better
accuracy and specificity of Atlas and ZTE were obtained.

There are several studies which compared the accuracy of
Atlas and ZTE MRAC (Sekine et al., 2016c; Yang et al., 2017b;
Sousa et al., 2018; Sgard et al., 2019). These studies revealed that
both the averaged error and the variability (standard deviation)
of the error among subjects were minimized by ZTE compared to
Atlas. Our results are in agreement with these previous studies:
both averaged and standard deviation of absolute PET score
difference were lower in ZTE than in Atlas. In addition, there
were two interesting results observed. First, the averaged PET
score difference of ZTE was not superior to Atlas. This may
indicate that the minimization of the net regional error doesn’t
directly lead to an improvement of the diagnosis accuracy of
dementia after the value normalization and t-score calculation.
Second, the PETscore error was not systematically under- or
over-estimated in each of the original 107 datasets. The t-score
calculation is based on the difference from averages and the
magnitude of the standard deviation in each region derived from
a normal database. It resulted in heterogeneous effect on each 107
dataset by identical MRAC error.

In one sole previous study, statistical analysis using SPM
procedure was performed for FDG-PET generated based on ZTE.
Sgard et al. (2019) recruited 50 patients who underwent FDG-
PET/MR as part of an investigation of suspected dementia. The
study revealed that ZTE was more accurate than Atlas for the
quantification of FDG uptake especially in the parietotemporal
junction, one of the earliest regions involved in AD. In that
study, the relative difference both of net SUV value and of
t-score calculated by using SPM was evaluated. Interestingly, the
distribution is similar but not the same between the two. For
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TABLE 2 | Diagnostic accuracy of original PET data and simulated MRAC PET data with various PET score values in each of the 2889 simulated datasets.

Cut-off value Accuracy Sensitivity Specificity

CTAC 1 83.2% (CI 81.8–84.5%) 83.3% (CI 81.2–85.3%) 83.1% (CI 81.1–84.9%)

Atlas-AC 1 82.5% (CI 81.0–83.8%) 77.2% (CI 74.9–79.5%) 86.7% (CI 84.9–88.3%)

Atlas-AC 0.924 82.5% (CI 81.0–83.8%) 80.8% (CI 78.5–82.9%) 83.8% (CI 81.9–85.6%)

ZTE-AC 1 82.1% (CI 80.7–83.5%) 78.6% (CI 76.3–80.8%) 85.0% (CI 83.1–86.7%)

ZTE-AC 1.143 83.7% (CI 82.3–85.1%) 74.8% (CI 72.3–77.1%) 91.0% (CI 89.5–92.4%)

example, supratentorial regions were generally underestimated
by ZTE MRAC but this underestimation was not observed after
the SPM procedure because the procedure includes intensity
normalization. Underestimation in the reference regions leads to
overestimation, which compensates the underestimation in the
target regions. In addition, they evaluated voxel-wise differences
between normal and abnormal brain FDG-PET. Although ZTE-
MRAC was more accurate than Atlas-AC, there were still clear
differences between CT-AC and ZTE-AC. One can expect that
even if the regional accuracy in AD-related voxels is achieved
by any MRAC, the result after value-normalization and t-value
calculation should be validated separately.

In terms of the validation of MRAC, one of the largest
studies is the two-institutional study conducted by Ladefoged
et al. (2017). They performed cross-comparison of 11 MRAC
methods to 337 subjects undergoing brain PET/MR and CT.
They clarified all of the novel methods provided by each research
group had an acceptable error (e.g., the MRAC error to silver
standard CTAC is less than 5 %). Though one of these methods
is freely accessible via web-based process3, MRAC which is not
supported by vendors is difficult to implement into clinical
workflow (Burgos et al., 2015; Sekine et al., 2016b). Apart
from these atlas/template-based or segmentation-based MRAC
methods, deep learning-based MRAC have been proposed in
research field. In published data, the method seems to be more
accurate than clinically available methods such as Atlas-AC or
ZTE-AC (Liu et al., 2018; Arabi et al., 2019; Shiri et al., 2019).
However, there is some variability of the methodology in each
published paper. Thus, the clinical implementation of this MRAC
method is not achieved yet.

The diagnostic accuracy was evaluated by using a single
software tool, and not done by other statistical approaches
or visual assessment. It was one of main limitations of the
current study. However, the diagnostic concept was similar to
that used in other software and in visual inspection. These
evaluations generally apply value-normalization and t-/z-score
calculation. We chose this software because of four reasons. First,
the whole steps were done in semi-automatic manner without
any interruption. It was practical and assured objective results.
Second, the model had validated in several large cohort study.
As a result, the method is used widely in clinical setting as
commercial software. Third, the statistical model is the simplest
to minimize the secondary effect by the statistical model. The
novel classification method has additional steps such as partial

3http://niftyweb.cs.ucl.ac.uk/program.php?p=PCT

volume effect and the normalization combining T1WI (Samper-
González et al., 2018). However, in the complicated statistical
mode, it becomes difficult to separate the primary effect of MRAC
error to value-normalization from whole effect of MRAC error as
the summing of each analysis steps.

The limitations of this study were as below. First, the
conclusions of the current study were based on a simulation study
rather than on “real” PET images of AD subjects reconstructed
with both MR and CT AC. To confirm the result in the current
study, well-controlled clinical trials using PET/MR scanners
should be performed in the future. Second, some of the error
maps were generated from patients imaged for the evaluation of
malignancy. The error derived from MRAC was mainly derived
from the incorrect estimation of skull thickness/density which
does not differ between oncology and dementia patients. Third,
we only recruited a limited number of patients, n = 27 for the
generation of MRAC. The simulation model multiplying 27 error
maps for each ADNI data might cause statistical ambiguousness.
However, a significant improvement of absolute PETscore based
on ZTE was observed. The validation of MRAC on large cohorts
is difficult to perform because additional CT is required to acquire
the gold-standard AC map.

CONCLUSION

In conclusion, statistical analysis utilizing a normal database
scanned by PET/CT can be applied to FDG-PET images
scanned by PET/MR implementing ZTE-MRAC. ZTE-MRAC
had superior accuracy to Atlas-MRAC even after statistical
analysis such as value-normalization and t-value calculation. It
is expected that the diagnostic accuracy for the discrimination of
AD from healthy control would be maintained by using FDG-
PET scanned by commercial PET/MR system.
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